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Manifestation of quantum chaos based on construction of an alternative method
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In this paper an alternative method has been performed to manifest chaos. We define a set of orthogonal
states and construct some Hermitian operators in a kicked top model. We define phase angle basis states which
are a particular linear superposition of the usual eigenstates ofJz . Each of these states is uniquely character-
ized by a different and discrete value which is called phase angle. Based on the basis states, some operators are
given to show the probability distribution and the variance of the phase angle. Choosing SU~2! coherent states
as initial states, we study the properties of the system.@S1063-651X~97!08004-5#

PACS number~s!: 05.45.1b, 03.65.Sq
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In recent years much work has been done to elucidate
quantum dynamics of classical chaotic systems and g
progress has been made in studying chaos in a quantum
tem @1#. As proposed in Ref.@2#, quantum chaos can b
considered as a quantum statistical relaxation. Accordin
such a point of view, we will investigate the temporal var
tion of a wave packet to study quantum chaos. There
various methods available for studies of the chaos in qu
tum mechanics. For example, uncertainty measure@3# and
expectation value of a certain dynamical observable@4# are
employed to manifest quantum chaos. The temporal va
tion of a wave packet has been studied with help of
information entropy@5#. But we will introduce an alternative
method in this paper.

In this paper, we study a property of temporal variation
motion of a system. A nonintegrable HamiltonianH is con-
sidered,

H5H01V, ~1!

whereH0 is an integrable Hamiltonian andV is perturbation.
For a given initial stateuc~0!&, the time evolution isuc(t)&
5U(t)uc(0)&; here,U(t) is the unitary time evolution op
erator. The coherent representation~or say Husimi represen
tation! and H0 representation are always employed
analyze the time evolution stateuc(t)&. Although the coher-
ent representation provides a powerful tool to study quan
chaos, the overcomplete coherent states chosen as a r
sentation bring on some slight difficulties. If we expand t
stateuc(t)& in H0 representation, we will obtain the expa
sion coefficientsci(t)e

if i (t),i51,2,...N, here we assume
both ci(t) andf i(t) are real and the number of dimensio
of the Hilbert space isN. A great deal of work has been don
to analyze the distribution ofuci(t)u

2 with the help of the
information entropy@5#. But it is important to analyze the
distribution off i(t). If the above mentioned number of d
mension of the Hilbert spaceN is infinite, the distribution of
uci(t)u

2 may be confined in a certain energy region, then
distribution of uci(t)u

2 may be not random in all of Hilber
space. But one may find the random distribution off i(t)
with the help of a phase theory in such cases. Moreover,
random distribution ofci(t) does not indicate a random dis
tribution of f i(t); we emphasize that distribution for bot
551063-651X/97/55~5!/6241~4!/$10.00
he
at
ys-

to
-
re
n-

a-
e

f

m
pre-

e

he

ci(t) andf i(t) should be analyzed in chaotic cases. So
this paper we introduce a method to study the distribution
f i(t).

We know that the phase theory was intensely utilized
quantum optics@6–9#. Pegg and Barnett introduced a set
orthogonal states of phase and an Hermitian phase ope
that tends to the classical correspondence in classical l
@6–8#. The phase theory enables us to examine the ph
properties of a system; moreover, the theoretical results
be tested in experiments@10,11#. So we think that it is nec-
essary to introduce a general phase theory to manifest
quantum chaos. We corroborate this idea with the help of
kicked top model.

The kicked top model describes the dynamics of a la
spin subject to a magnetic field and an impulsive interacti
and it is a suitable model for studying various problem
@12,13#. Recently, attention has been devoted to observ
the maintenance and loss of coherence of an initial cohe
state in the kicked top@14#. The dynamical variable of the

model is the angular momentum vector\JW5\@ Ĵx,Ĵy,Ĵz#,

which obeys the commutation relation@ Ĵi ,Ĵ j #5 i« i jk Ĵk. The
Hamiltonian is

H~ t !5~\p/T!Ĵx1~\l/2 j !Ĵz
2(

2`

1`

d~ t2nT!. ~2!

We choosep5p/2 in all of this paper. This quantum syste
is generally analyzed inJz representationu j ,m&. The normal-
ized vectorVW 5JW / j lies on the unit sphere in the classic

limit j→`. The time evolution of the vectorVW of the corre-
sponding classical model can be obtained by the follow
map @12#:

X85X cos~lY!1Z sin~lY!,

Y85X sin~lY!2Z cos~lY!, ~3!

Z85Y.

Because the vectorVW is unit vector in classical limit, the
corresponding point (X,Y,Z) is on the unit sphere. The ca
nonical coordinates of the unit sphere are cos~z! and w,
0<z<p; 0<w<2p, they are

I5Z5cos~z!,

w5arctan~Y/X!. ~4!
6241 © 1997 The American Physical Society
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To study quantum chaos we take the classical case
guides. We project point (X,Y,Z) in the unit sphere onto a
plane, i.e., (X,Y) plane. Then we can obtain the strobosco
map in (X,Y) plane for various kicking strength. Figure
1~a!–1~c! display the stroboscopic maps forl52.5, 3.2, and
4, respectively. Here we only plotted the projection of t
upper hemisphere~Z.0!. These plots show that the increa
ing kicking strength enlarges the chaotic region gradually

Because a SU~2! coherent state is the quantum analog o
certain point in the classical unit sphere, it is necessary
choose a SU~2! coherent state as the initial state in quantu
cases. The SU~2! coherent statesuz,w& are @12#

uz,w&5~11gg* !2 jeg j2u j , j &, ~5!

whereg5eiwtan~z/2!. Then

^ j ,muz,w&5~11gg* !2 jg j2mF S 2 j
j2mD G1/2. ~6!

Equation~6! shows that a coherent state is strongly loc
ized and the continuous variable cos~z! is the classical analog
of the quantum numberJz/ j when j→`. So in a coherent
state we also denote cos~z! as the one in classical dynamic

When the initial stateuc~0!& is given in the kicked top
model, its time evolutionuc(t)& is generally discussed inJz
representation,u j ,2 j &,u j ,2 j11&,...,u j , j &, wherej is an in-
teger or a half-integer. Now we introduce a particular sp
in the kicked top in parallel to the space used in the Pe
Barnett theory. The particular space is based on introduc
a finite 2j11 dimensional spaceC spanned by the state
u j ,2 j &, u j ,2 j11&,...,u j , j &. Moreover, some Hermitian op
erators operating on this finite space are defined. The se
orthogonal phase states are defined by

uum&5
1

A2 j11
(
n52 j

j

exp~ inum!u j ,n&, ~7!

where then is also an integer or a half-integer. Theum reads
as

um5u01
2mp

2 j11
, m50,1,2,...,2j . ~8!

The value ofu0 is arbitrary. It is known from Eqs.~7! and~8!
that each of the basis states is linear superposition of
usual eigenstates ofJz and each of them is characterized
a different value of a discrete parameterum . We callum the
phase angle.

When a SU~2! coherent stateuz,w& is chosen as the initia
state in the kicked top, its time evolution isuc(nT)&,

uc~nT!&5Un~T!uz,w&, ~9!

where the U(T) is the Floquet operator U(T)
5exp[2 i (l/2j )J z

2]exp[2 ipJx/T]. Then the probability dis-
tribution of phase angleP(um) for uc(nT)& is defined as

P~um ,nT!5^umuUn~T!uz,w&^z,wuU1n~T!uum&. ~10!

In the basis states, an Hermitian phase angle operator ca
defined as

f̂u5 (
m50

2 j

umuum&^umu, f̂uuum&5umuum&. ~11!

The expectation value of the phase angle operator for
uc(nT)& is given by
as

c
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^f̂u~nT!&5 (
m50

2 j

um^c~nT!uum&^umuc~nT!&. ~12!

From the expectation values off̂u and off̂ u
2 one can obtain

the variance of phase angle, which is written asF1,

F15^~Df̂u!2&5^f̂u
2&2^f̂u&

2. ~13!

In this paper, we make the particular choice
u0522 jp/2j11. Thenum follows,

um52
2 jp

2 j11
1

2pm

2 j11
, m50,1,...,2j . ~14!

Choosing the SU~2! coherent stateu1,p/4& as the initial
state and using Eqs.~7!–~14! one can obtain the probability
distribution of phase angle and the variance of the ph
angle. From Fig. 1 we know that the classical point cor
sponding the coherent stateu1,p/4& is trapped in a large regu
lar region whenl52.5, and that the point forl53.2 is em-
bedded in a small stable inland. From Fig. 1~c!, it is easy to
see that the point forl54 is in a chaotic sea. Now we wil
see the results ofF1(nT) for the initial stateu1,p/4& in quan-
tum mechanics. The results shown in Fig. 2, where curve
2, and 3 areF1(nT) for l52.5, 3.2, and 4, respectively. It i
shown from curve 1 forl52.5 that the variance of phas
angle is small, which indicates that the structure of ph
angle for theuc(nT)& is always localized. It is indicated from
curve 2 forl53.2 that the variance of phase angle satura
at about 1 rad. It is easy to see that curve 3 rapidly reache
saturation value nearp, which indicates that the structure o
the phase angle is delocalized in the long-time region.

If the same initial state is chosen, the results for proba
ity distribution of the phase angle at special time are d
played in Fig. 3. Figure 3~a! shows the results forl52.5,
where the dotted curve is the probability distribution
phase angle for the initial coherent stateu1,p/4&, and the solid
curve is the results att5197T. The two curves in Fig. 3~a!
tell us that both theuc~0!& and uc(197T)& possess a regula
structure of a phase angle. In Fig. 3~b!, the dotted and solid
curves show the results forl53.2 att50 and 120T, respec-
tively. From curve 2 in the Fig. 2, one can see that the
laxation process is over whent5120T, so Fig. 3~b! means
that the kick withl53.2 cannot destroy the localized stru
ture of the phase angle completely. The results forl54 are
plotted in Fig. 3~c!, where the dotted and solid are fort50
and 30T, respectively. Figure 3~c! shows that the initial regu-
lar structure of the phase angle is destroyed completely
the kicks. And the solid curve is Fig. 3~c! indicates that the
probability distribution of the phase angle att530T is al-
ready stochastic.

To analyze the phase probability distribution in detail w
define the Shannon entropy as

S~nT!52 (
m50

2 j

P~um ,nT!ln@P~um ,nT!#. ~15!

The j is chosen as 70 in our calculation. We plot the nume
cal results ofS(nT) for l54 in Fig. 4, where one can se
that the time evolution ofS quickly reaches the saturatio
value which equals to 4.5 approximately and that the lo
time S(nT) stochastically fluctuates around the saturat
value, which can be predicted by the random theory.
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If we assume thatP(um ,nT) can be described by thex2
2

distribution

x2
2~y!5

1

^y&
exp~2y/^y&!, ~16!

where thê y&51/2j11. The ideal Shannon entropy can b
obtained@13# as

S52~2 j11!E
0

`

y ln~y!x2
2~y!dy5 ln~2 j11!2C~2!,

~17!

FIG. 1. Stroboscopic maps of phase space for the class
kicked top withp5p/2 and~a! l52.5; ~b! l53.2; ~c! l54. Above
stroboscopic maps are for the hemisphere ofZ.0.
whereC is the digamma function. Whenj570, the idealS is
4.53. It can be concluded from Fig. 4 that the phase pr
ability distribution forl54 is random in long-time regions

In quantum optics the sine and cosine components
phase are intensely used, which can be measured in ex
ments @10,11#. So we also discussed both sine and cos
components of the phase angle in the kicked top mo
From Eqs.~7!, ~8!, and~11!, through brief deduction, we ca
obtain two exponential operators exp~i f̂u! and exp~2i f̂u!

1,

al

FIG. 2. Curves 1, 2, and 3 correspond toF1(nT) for l52.5, 3.2,
and 4, respectively. Hereuc~0!&5u1,p/4& andp5p/2.

FIG. 3. When uc~0!&5u1,p/4& and p5p/2, the results of the
phase probability distribution is for~a! l52.5; ~b! l53.2; ~c! l54.
In ~a! the dotted line is forn50 and the solid line is forn5197. In
~b! the dotted line is forn50 and the solid line is forn5120. In~c!
the dotted line is forn50 and the solid line is forn530.
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and the exp~i f̂u! are given by
exp~ i f̂u!5exp@ i ~2 j11!u0#u j , j &^ j2 j u

1 (
n52 j

j21

u j ,n&^ j ,n11u, ~18!

and it is obvious that

exp~ i f̂u!u j ,n&5H exp[i ~2 j11!u0] u j , j &, n52 j

u j ,n21&, nÞ2 j .
~19!

From the above-mentioned equation one can know that
exponential operators are unitary. So exp~2i f̂u!
5exp(i f̂u!

1. According to the work by Pegg and Barn
@6–8#, the cos~f̂u!, cos

2~f̂u! and sin~f̂u!, sin
2~f̂u! are given

by

cos~f̂u!5 1
2 @exp~ i f̂u!1exp~2 i f̂u!#,

sin~f̂u!5
1

2i
@exp~ i f̂u!2exp~2 i f̂u!# ~20!

and
cos2~f̂u!5 1

4 @exp~2i f̂u!1exp~22i f̂u!12#,

sin2~f̂u!52 1
4 @exp~2i f̂u!1exp~22i f̂u!22#. ~21!

It is easy to find the relation

cos2~f̂u!1sin2~f̂u!51. ~22!

We define the variances of cos~f̂u! and of sin~f̂u! as follows:

FIG. 4. S(nT) for the initial stateu1,p/4& with l54, p5p/2 and
j570.
ev
e

F25^cos2~f̂u!&2^cos~f̂u!&2,

F35^sin2~f̂u!&2^sin~f̂u!&2. ~23!

From the same initial stateu1,p/4&, the time evolutions ofF2
and of F3 for the kicked top model can be obtained. Th
numerical results for the variance of cos~f̂u!, i.e., the time
evolution ofF2 have been plotted in Fig. 5 where curves
2, and 3 are the results for thel52.5, 3.2, and 4, respec
tively. Curve 1 shows that the variance of cosine compon
of phase angle forl52.5 is almost zero. In the case o
l53.2, whenn5120,F2(nT) will reach its saturation value
which is relatively large. Curve 3 forl54 tells us that the
strong kick leads to great variances of the components of
phase angle quickly. One can see that Fig. 5 agrees with
results in Fig. 2 well.

At last we draw the main conclusion of this work
Through this work we know the initial coherent state po
sesses a regular structure of the phase angle, but perturb
will distort or destroy the regularity. In chaotic cases, due
the strong enough perturbation, the long-time probability d
tribution of the phase angle will be stochastic. Increasing
strength of perturbation enlarges the variances off̂u ,
cos~f̂u!, and sin~f̂u!. Because the operatorsf̂u , cos~f̂u!, and
sin~f̂u! are realistic physical operators, their behavior m
be observed in experiment. So our approach may provid
possibility of testing the quantum chaos experimenta
Generalizing the phase theory is interesting work which m
open a new field about the study of quantum chaos.

FIG. 5. Curves 1, 2, and 3 correspond toF2(nT) for l52.5, 3.2,
and 4, respectively. Hereuc~0!&5u1,p/4& andp5p/2.
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@13# Karol Źyczkowski, J. Phys. A23, 4427~1990!.
@14# X. Regezet al., Comput. Phys.10, 38 ~1996!.


