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Manifestation of quantum chaos based on construction of an alternative method
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In this paper an alternative method has been performed to manifest chaos. We define a set of orthogonal
states and construct some Hermitian operators in a kicked top model. We define phase angle basis states which
are a particular linear superposition of the usual eigenstatds. dEach of these states is uniquely character-
ized by a different and discrete value which is called phase angle. Based on the basis states, some operators are
given to show the probability distribution and the variance of the phase angle. Choogi2gcBhlerent states
as initial states, we study the properties of the sys{&h063-651X%97)08004-5

PACS numbds): 05.45:+b, 03.65.Sq

In recent years much work has been done to elucidate the(t) and ¢;(t) should be analyzed in chaotic cases. So in
qguantum dynamics of classical chaotic systems and gredhis paper we introduce a method to study the distribution of
progress has been made in studying chaos in a quantum syg;(t).
tem [1]. As proposed in Ref[2], qguantum chaos can be  We know that the phase theory was intensely utilized in
considered as a quantum statistical relaxation. According tquantum optic§6—9]. Pegg and Barnett introduced a set of
such a point of view, we will investigate the temporal varia- orthogonal states of phase and an Hermitian phase operator
tion of a wave packet to study quantum chaos. There arthat tends to the classical correspondence in classical limit
various methods available for studies of the chaos in quarf6—8]. The phase theory enables us to examine the phase
tum mechanics. For example, uncertainty meag$@teand  properties of a system; moreover, the theoretical results can
expectation value of a certain dynamical observddleare  be tested in experimenf40,11]. So we think that it is nec-
employed to manifest quantum chaos. The temporal variaessary to introduce a general phase theory to manifest the
tion of a wave packet has been studied with help of thequantum chaos. We corroborate this idea with the help of the
information entropy5]. But we will introduce an alternative kicked top model.
method in this paper. The kicked top model describes the dynamics of a large

In this paper, we study a property of temporal variation ofspin subject to a magnetic field and an impulsive interaction,
motion of a system. A nonintegrable Hamiltonilinis con- and it is a suitable model for studying various problems
sidered, [12,13. Recently, attention has been devoted to observing

the maintenance and loss of coherence of an initial coherent
H=HO+V, (1) state in the kicked topl4]. The dynamical variable of the

model is the angular momentum vectbrT:h[jx,jy,jz],
which obeys the commutation relati@ﬁi,jj]=isijkjk. The

whereH? is an integrable Hamiltonian andis perturbation. Hamiltonian is

For a given initial statéy(0)), the time evolution ig(t)) +oo
=U(t)|¢(0)); here,U(t) is the unitary time evolution op- H(t)=(ﬁp/T)jx+(ﬁ)\/2j)3§E s(t—nT). )
erator. The coherent representat{on say Husimi represen- —

tation and "_'O representation are always employed 10\yg choosgy=m/2 in all of this paper. This quantum system
analyze the time evolution stalg(t)). Although the coher- g enerally analyzed i, representatiofj,m). The normal-
ent representation provides a powerful tool to study quantum -2 . . .
chaos, the overcomplete coherent states chosen as a rep'lzee—d vectorV=J/} lies on the unit sphereﬁm the classical
sentation bring on some slight difficulties. If we expand thelimit j—c. The time evolution of the vectdr of the corre-
state|y(t)) in H® representation, we will obtain the expan- sponding classical model can be obtained by the following

sion coefficientsc;(t)e'®,i=1,2,..N, here we assume Map[12]:

both ¢;(t) and ¢;(t) are real and the number of dimensions X"'=X cog\Y)+Z sin(AY),
of the Hilbert space i8l. A great deal of work has been done , )
to analyze the distribution oft;(t)|? with the help of the Y'=Xsin(\Y)—Z cogrY), (©)

information entropy{5]. But it is important to analyze the
distribution of ¢,;(t). If the above mentioned number of di-
mension of the Hilbert spad¥ is infinite, the distribution of Because the vectov is unit vector in classical limit, the
|ci(t)|> may be confined in a certain energy region, then thecorresponding pointX,Y,Z) is on the unit sphere. The ca-
distribution OflCi(t)|2 may be not random in all of Hilbert nonical coordinates of the unit sphere are (¢psand o,
space. But one may find the random distribution ¢{t) O<(<m; 0<¢<2m, they are

with the help of a phase theory in such cases. Moreover, the

random distribution ot;(t) does not indicate a random dis- | =Z=cog{),

tribution of ¢;(t); we emphasize that distribution for both p=arctariY/X). (4

Z'=Y,
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To study quantum chaos we take the classical cases as 2
guides. We project pointX,Y,Z) in the unit sphere onto a b.(nT)) = P Y nT 12
plane, i.e., K,Y) plane. Then we can obtain the stroboscopic (4(nT)) mE:O m( PN D] o) {( Ol p(nT)). - (12)

map in (X,Y) plane for various kicking strength. Figures ) ~ ~ )
1(a)-1(c) display the stroboscopic maps for=2.5, 3.2, and From the expectation values g, .and.of¢€ one can obtain
4, respectively. Here we only plotted the projection of thethe variance of phase angle, which is writtenFgs
upper hemispheréZ>0). These plots show that the increas- Fi=((Adp)D=(dD— ()2 (13
ing kicking strength enlarges the chaotic region gradually.

Because a S(2) coherent state is the quantum analog of aln this paper, we make the particular choice of
certain point in the classical unit sphere, it is necessary tdh=—2j7/2j+1. Thené, follows,

choose a S(2) coherent state as the initial state in quantum 2jm  2mm
cases. The S@) coherent stateg’,cp} are[12] 0= — m+ 21’ m=0,1,...,3. (14
o) =1+yy*) e’} j), 5 .
, [Ge) =1t yy") [i.0) ® Choosing the S(2) coherent statél,n/4) as the initial
where y=e'“tan({/2). Then state and using Eq$7)—(14) one can obtain the probability
1/2 distribution of phase angle and the variance of the phase

(.Ejm> (6) angle. From Fig. 1 we know that the classical point corre-
J sponding the coherent stdfien/4) is trapped in a large regu-
Equation(6) shows that a coherent state is strongly local-lar region whem\=2.5, and that the point fax=3.2 is em-
ized and the continuous variable ¢9ss the classical analog bedded in a small stable inland. From Figc)l it is easy to
of the quantum numbel,/j whenj—c. So in a coherent see that the point fox=4 is in a chaotic sea. Now we will
state we also denote dd@s as the one in classical dynamics. see the results df,(nT) for the initial statd1,7/4) in quan-
When the initial statgdy{0)) is given in the kicked top tum mechanics. The results shown in Fig. 2, where curves 1,
model, its time evolutiony(t)) is generally discussed i, 2, and 3 aré=,(nT) for A=2.5, 3.2, and 4, respectively. It is
representationj,—j),|j,—j+1),...,lj,j), wherej isanin-  shown from curve 1 fol=2.5 that the variance of phase
teger or a half-integer. Now we introduce a particular spacangle is small, which indicates that the structure of phase
in the kicked top in parallel to the space used in the Peggangle for they{(nT)) is always localized. It is indicated from
Barnett theory. The particular space is based on introducingurve 2 forn=3.2 that the variance of phase angle saturates
a finite 2j+1 dimensional spac& spanned by the states at about 1 rad. Itis easy to see that curve 3 rapidly reaches its

(J,m[g,@y=(1+yy*) Iyl~m

[i,—i)s |i,—i+1),....li,j). Moreover, some Hermitian op- saturation value nea, which indicates that the structure of
erators operating on this finite space are defined. The set tlie phase angle is delocalized in the long-time region.
orthogonal phase states are defined by If the same initial state is chosen, the results for probabil-
i ity distribution of the phase angle at special time are dis-
[Om) = —= > expingy)|j,n), (7)  played in Fig. 3. Figure @) shows the results fox=2.5,
V2j+1n=-] where the dotted curve is the probability distribution of
where then is also an integer or a half-integer. THg reads ~ Phase angle for the initial coherent stiter/4), and the solid
as curve is the results at=197T. The two curves in Fig. &
omar tell us that both they{(0)) and |¢(197T)) possess a regular
6,n= 0o+ 5T m=0,1,2....9. (8) structure of a phase angle. In Figbhg the dotted and solid

curves show the results far=3.2 att=0 and 120, respec-

The value off, is arbitrary. It is known from Eqg7) and(8)  tively. From curve 2 in the Fig. 2, one can see that the re-
that each of the basis states is linear superposition of thi@xation process is over when=120T, so Fig. 3b) means
usua' eigenstates dfz and each Of them is Characterized by that the k|Ck W|th7\:32 cannot deStroy the |Ocallzed struc-
a different value of a discrete parametiy. We call 6, the ~ ture of the phase angle completely. The results\fert are

phase angle. plotted in Fig. 3c), where the dotted and solid are for0
When a SW2) coherent staté, @) is chosen as the initial and 30, respectively. Figure(8) shows that the initial regu-
state in the kicked top, its time evolution [ig(nT)), lar structure of the phase angle is destroyed completely by
the kicks. And the solid curve is Fig(® indicates that the
[p(nT))=U"T)|{, @), (9 probability distribution of the phase angle @t 30T is al-

where the U(T) is the Floguet operator U(T) ready stochastic. o _
=exp[—i(\/2j)J Zexp[—ipJ,/T]. Then the probability dis- To analyze the phase probability distribution in detail we

tribution of phase angl®(#6,,) for |{nT)) is defined as define the Shannon entropy as
2j
— n +n
P(Gm,nT)—(0m|U (T)|§,(,D><§,(p|U (T)|0m>- (10 S(nT)=— E P(6,,,nT)IN[P(8,,,nT)]. (15)
In the basis states, an Hermitian phase angle operator can be m=0
defined as Thej is chosen as 70 in our calculation. We plot the numeri-

- 2 - cal results ofS(nT) for A=4 in Fig. 4, where one can see
b= 2 Ol 0Ol el Om)=0ul0m). (1) that the time evolution oB quickly reaches the saturation
m=0 . .
value which equals to 4.5 approximately and that the long-
The expectation value of the phase angle operator for thtme S(nT) stochastically fluctuates around the saturation

|(nT)) is given by value, which can be predicted by the random theory.
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FIG. 1. Stroboscopic maps of phase space for the classical

kicked top withp==/2 and(a) A=2.5; (b) A=3.2; (c) \=4. Above
stroboscopic maps are for the hemispher& of0.

If we assume thaP(6,,,nT) can be described by thg
distribution

1
20\) = —

where the(y)=1/2j+ 1. The ideal Shannon entropy can be

obtained[13] as

S=-(2j+1) f:y In(y)x5(y)dy=In(2j+1)—¥(2),
(17)
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FIG. 2. Curves 1, 2, and 3 correspondRg(nT) for A=2.5, 3.2,
and 4, respectively. Herg/(0))=|1,7/4) and p=/2.

whereV is the digamma function. When=70, the ideaB is
4.53. It can be concluded from Fig. 4 that the phase prob-
ability distribution forA=4 is random in long-time regions.

In quantum optics the sine and cosine components of
phase are intensely used, which can be measured in experi-
ments[10,11. So we also discussed both sine and cosine
components of the phase angle in the kicked top model.
From Eqs.(7), (8), and(11), through brief deduction, we can
obtain two exponential operators ékgp,) and exgp—i¢,)",

0.2+

(2) ]

p(8)

(b)

0.1} ]

p(8)

p(8)

0.0 f A ks
. -n/2 0

FIG. 3. When|0))=|1,m/4) and p=m/2, the results of the
phase probability distribution is fgg) A=2.5; (b) A=3.2;(c) A=4.
In (a) the dotted line is fon=0 and the solid line is fon=197. In
(b) the dotted line is fon=0 and the solid line is fon=120. In(c)
the dotted line is fon=0 and the solid line is fon=30.
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FIG. 4. S(nT) for the initial statg1,m/4) with \=4, p==/2 and
j=70.

and the exfi <Az>9)A are given by
exp(i pg) =exfi(2j+1)6oj,j)(i—il

ji—1

+n;j lj,n)(j,n+1], (18)
and it is obvious that
RN expli(2j+1)6o]lj.i), n=-—]j
exp(i¢y)|j.n)= lin—1), ne—j. (19

FIG. 5. Curves 1, 2, and 3 correspondig(nT) for A\=2.5, 3.2,
and 4, respectively. Herg/(0))=|1,7/4) and p=/2.

Fo=(cog(y))—(cod ¢y))2,
Fa=(Sir($y))—(sin($y))% 23

From the same initial staié,=/4), the time evolutions oF ,

and of F5 for the kicked top model can be obtained. The
numerical results for the variance of ¢gs), i.e., the time
evolution of F, have been plotted in Fig. 5 where curves 1,
2, and 3 are the results for the=2.5, 3.2, and 4, respec-
tively. Curve 1 shows that the variance of cosine component
of phase angle foh=2.5 is almost zero. In the case of

From the above-mentioned equation one can know that thg:3_2, whenn=120, F,(nT) will reach its saturation value,

exponential operators are unitary. So

exps,)

which is relatively large. Curve 3 fax=4 tells us that the

=exp(¢,) . According to the work by Pegg and Barnet strong kick leads to great variances of the components of the

[6—8], the co$e,), cos(p,) and sifie,), sirf(¢,) are given
by
cos dg)= § [expli ) +exp(—i )],

~ 1 - -
sin(¢,) = 57 [expli ¢g) —exp(—i¢y)] (20

and A . A
oS (o) = 7[eXP(2i By) +exp( —2i dy) +2],
SIM(g) = — $[eXp(2i ) + exp —2i p)— 2] (2D)
It is easy to find the relation
co2(b,) +Sirt(py) = 1. (22)

We define the variances of c(é@) and of sini;bﬁ) as follows:

phase angle quickly. One can see that Fig. 5 agrees with the
results in Fig. 2 well.

At last we draw the main conclusion of this work.
Through this work we know the initial coherent state pos-
sesses a regular structure of the phase angle, but perturbation
will distort or destroy the regularity. In chaotic cases, due to
the strong enough perturbation, the long-time probability dis-
tribution of the phase angle will be stochastic. Increasing the
strength of perturbation enlarges the variances ¢of,
cod ¢,), and siri¢ ;). Because the operatofs,, cog¢,), and
sin(¢,) are realistic physical operators, their behavior may
be observed in experiment. So our approach may provide a
possibility of testing the quantum chaos experimentally.
Generalizing the phase theory is interesting work which may
open a new field about the study of quantum chaos.
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